史上超详细的天线知识
天线,是我们生活中很常见的一种通讯设备。但是,大部分人其实对它并不了解,可能只知道它是收发信号的。
本文面向零基础读者,专业或非专业人士,皆可阅读,绝对通俗易懂,干货满满。
废话不多说,直入正题!
话说,自从1894年老毛子科学家波波夫成功发明了天线之后,这玩意迄今已有124年的历史。
波波夫和他的发明
在这漫长的历史长河之中,它对人类社会发展和进步做出了卓绝的贡献。
二战中屡立奇功的英国雷达天线
如今,不管是老百姓日常工作生活,还是科学家进行科研探索,都离不开天线君的默默奉献。
天线究竟是一根什么样的“线”,为什么会如此彻底地改变我们的生活?
其实,天线之所以牛逼,就是因为电磁波牛逼。
电磁波之所以牛逼,一个主要原因就是,它是唯一能够不依赖任何介质进行传播的“神秘力量”。即使在真空中,它也能来去自如,而且转瞬即至。
电磁波效果图
电磁波传播示意图
想要充分利用这股“神秘力量”,你就需要天线。
天线的英文名:Antenna(也有触须、直觉之意)
再通俗点,天线就是一个“转换器”——把传输线上传播的导行波,变换成在自由空间中传播的电磁波,或者进行相反的变换。
天线的作用
什么叫导行波?
简单来说,导行波就是一种电线上的电磁波。
天线是怎么实现导行波和空间波之间转换的呢?
看下图:
中学物理学过,两根平行导线,有交变电流时,就会形成电磁波辐射。
两根导线很近时,辐射很微弱(导线电流方向相反,产生的感应电动势几乎抵消)。
两根导线张开,辐射就会增强(导线电流方向相同,产生的感应电动势方向相同)。
当导线的长度增大到波长的1/4时,就能形成较为的辐射效果!
有了电场,就有了磁场,有了磁场,就有了电场,如此循环,就有了电磁场和电磁波。。。
电生磁,磁生电
再来个图,大家感受一下这个优美的过程:
导线电流方向的变化,产生了变化的电场
产生电场的这两根直导线,就叫做振子。
通常两臂长度相同,所以叫对称振子。
长度像下面这样的,叫半波对称振子。
半波对称振子
把导线两头连起来,就变成了半波对称折合振子。
半波对称折合振子
有点像刷墙的油漆刷子。
对称振子是迄今最为经典,使用最为广泛的天线。
理论还是有点枯燥啊,赶紧的,我们来结合一下实物。
真实世界中的振子,是个什么样?
Duang!就是这样——
就是这么个金属片。。。半波对称振子(非折合)
好吧,其实上面这个只是振子的一个传统形态,它还有N种变(身)态:
造型怪异的振子
懵逼了吧?如果说振子就是天线,那这哪里是天线嘛?我们现实生活中看到的天线不是这个鸟样啊?
确切地说,振子不是一个完整的天线。振子是天线的核心部件,形态会随天线的形态变化而变化。
而天线的形态,实在是太TM多了。。。多了。。。了。。。
总而言之,成百上千。。。
虽然天线的形态千奇百怪,但是根据相似度,也可以进行大致归类。
按波长分:中波天线、短波天线、超短波天线、微波天线...
按性能分:高增益天线、中增益天线...
按指向分:全向天线、定向天线、扇区天线...
按用途分:基站天线、电视天线、雷达天线、电台天线...
按结构分:线天线、面天线...
按系统类型分:单元天线、天线阵...
……
如果按照外型来分,常见的几种,如下图:
鞭状天线
抛物面天线
八木天线
PS:八木天线并不是八根木头,虽然我数学不好,但是八我还是数得来的。之所以叫八木,是因为它是二十世纪20年代日本人八木秀次和宇田太郞发明的,叫“八木宇田天线”,简称“八木天线”(可怜的宇田)。
我们通信汪最关心的,当然是——通信基站天线!
基站天线,是基站天馈系统的组成部分,也是移动通信系统的重要组成部分。
基站天线一般分为室内天线和室外天线。
室内天线通常包括全向吸顶天线和定向壁挂天线等。
我们重点说说室外的。
室外基站天线也分为全向的和定向的。定向天线再细分为定向单极化天线和定向双极化天线。
什么是极化?别急,我们待会再说。我们先说说全向和定向。
其实顾名思义,全向天线就是向四周发射和接收信号的,而定向天线,是向指定方向。
室外全向天线,是这样的:
就是一根棒子,有粗的,也有细的。
它里面的振子,是这样的:
相比全向天线,现实工作生活中,定向天线使用最为广泛。
它大部分时候看上去就是一个板子,所以叫板状天线。
板状天线,主要由以下部分组成:
* 辐射单元(振子)
* 反射板(底板)
* 功率分配网络(馈电网络)
* 封装防护(天线罩)
之前我们看到那些奇怪形状的振子,其实都是基站天线的振子。
大家注意到没,这些振子的角度,有一定的规律:要么是“+”,要么是“×”。
嗯,这就是前面我们提到的“极化”。
无线电波在空间传播时,其电场方向是按一定的规律而变化的,这种现象称为无线电波的极化。
如果电波的电场方向垂直于地面,我们称它为垂直极化波。同理,平行于地面,就是水平极化波。另外,还有±45°的极化。
不仅如此,电场的方向还可以是螺旋旋转的,叫椭圆极化波。
双极化,就是2个天线振子在一个单元内,形成两个独立波。
采用双极化天线,可以在小区覆盖时减少天线的数量,降低天线架设的条件要求,进而减少投资,还能保证覆盖效果。总之,就是好处多多。
密集恐惧症又犯了。。。
我们继续前面全向和定向天线的话题。
为什么定向天线可以控制信号的辐射方向呢?
我们先来看个图:
这种图,叫做天线方向图。
因为空间是三维立体的,所以这种从上往下的俯视,以及从前往后的正视,会更加清晰直观地观察到天线辐射强度的分布。
上图也是一对半波对称振子产生的天线方向图,有点像个平放的轮胎。
话说,天线的诸多特性中,一个很重要的能力,就是辐射距离。
怎样才能让这个天线的辐射距离更远呢?
答案就是——
拍它。。。
啪叽!
这下辐射距离不就远了嘛。。。
问题是,辐射这玩意,看不见抓不着,你想拍它,也拍不着啊。
在天线理论里,如果你想拍这一巴掌,正确的做法是——增加振子。
振子越多,轮胎越扁。。。
这个造型有点像那啥啊。。。呵呵
好了,轮胎被拍成了饼,信号距离是远了,而且,它是向周围360°发散的,是个全向天线。这种天线,放在荒郊野外,是极好的。但是,在城市里,这种天线就很难玩得转了。
城市里,人群密集,建筑林立,通常需要使用定向天线,对指定范围进行信号覆盖。
城区基本上都是定向天线
于是乎,我们就需要对全向天线进行“改造”。
首先,我们要想办法把其中一侧“挤一挤”:
怎么挤呢?我们加上反射板,挡在一侧。然后,配合多个振子,进行“聚焦”。
最后,我们得到的辐射形状,是这样的:
图中,辐射强度最大的瓣称为主瓣,其余的瓣称为副瓣或旁瓣,屁股上还会有一点尾巴,叫后瓣。
现在的天线,安装时都具备这个能力,一个机械臂,搞定。
但是,机械下倾也存在一个问题——
采用机械下倾时,天线垂直分量和水平分量的幅值是不变的,所以天线方向图严重变形 。
这肯定不行啊,影响了信号覆盖。于是,我们采用了另外一种办法,就是电调下倾,简称电下倾。
简而言之,电下倾就是保持天线本体的物理角度不变,通过调整天线的振子相位,改变场强强度。
来个动图,就看明白了:
相比于机械下倾,电下倾的天线方向图变化不大,下倾度数更大,而且,前瓣和后瓣都朝下。
当然啦,在实际使用中,经常会机械下倾和电调下倾配合使用。
下倾之后,就变成了这样——
在这种情况下,天线的主要辐射范围,得到了较充分的利用。
——内容引用自小枣君